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Abstract The Quantum Monte Carlo (QMC) method is used to study physical prob-
lems which are analytically intractable due to many-body interactions and strong
coupling strengths. This makes QMC a natural choice in the warm dense matter
(WDM) regime where both the Coulomb coupling parameter Γ ≡ e2/(rskBT ) and
the electron degeneracy parameter Θ ≡ T/TF are close to unity. As a truly first-
principles simulation method, it affords superior accuracy while still maintaining
reasonable scaling, emphasizing its role as a benchmark tool.

Here we give an overview of QMC methods including diffusion MC, path in-
tegral MC, and coupled electron-ion MC. We then provide several examples of
their use in the WDM regime, reviewing applications to the electron gas, hydro-
gen plasma, and first row elements. We conclude with a comparison of QMC to
other existing methods, touching specifically on QMC’s range of applicability.
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1 Introduction

With the development of high performance computing over the last few decades,
simulation has become a ubiquitous many-body physics tool, see, for example, some
of the other contributions in this volume. Most simulations are based on a classical
description of atoms and molecules and use either a molecular dynamics (MD) or a
Monte Carlo (MC) algorithm.

However, the microscopic description of warm dense matter (WDM) poses a par-
ticular difficulty, since classical mechanics is far from adequate. It is not convenient
to describe the system as a perturbation from the ground state, that is as a sum over
electronic excitations, since there are so many states. At a sufficiently high tem-
perature, one needs a method that treats electrons and other quantum particles as
particles and not as delocalized wavefunctions. Imaginary time path integrals pro-
vide a particular fortuitous formalism, since they supply a direct mapping of the
quantum system into a classical system and reduce to the classical limit at high
temperature. A big conceptual difficulty preventing the straightforward use of the
path integral method is the issue of how to map fermion statistics into a probability.
As we discuss below, this has an “in principle” solution: the restricted path integral
method which, however, requires an ansatz to treat general fermion systems.

In this short review, we briefly describe three quantum Monte Carlo (QMC)
methods, including diffusion MC, path integral MC, and coupled electron-ion MC,
and their application to several WDM systems. We then close with a summary of
strengths and weakness of the QMC methods.

1.1 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC), along with the simpler Variational Monte Carlo
(VMC), are two of the most popular stochastic methods employed in ground-state
calculations of the Schrödinger equation for continuous systems. Even though they
are zero temperature methods, they can be used in conjunction with other methods
to treat regimes not dominated by electronic excitations [1, 2].

1.1.1 Formalism

As the name suggests, Variational Monte Carlo (VMC) is based on the variational
principle of quantum mechanics. It states that the expectation value of the Hamil-
tonian, with respect to any trial wave function ΨT , will be a minimum for the exact
ground state wave function:

E[ΨT ] =

∫
Ψ ∗T ĤΨT dr∫ |ΨT |2dr

=
∫

π(r)EL(r)dr,
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π(r) =
|ΨT (r)|2∫ |ΨT |2dr

, EL(r) =
ĤΨT (r)
ΨT (r)

, (1)

where r is a 3Ne-dimensional vector. The functional, E[ΨT ], provides an upper
bound to the ground state energy of the system. The basic problem is finding flexible
trial wave functions that are good approximations to the ground state. This typically
requires some intuition and knowledge of the system.1

The Diffusion Monte Carlo (DMC) method [3], on the other hand, is based
on the connection between quantum mechanics and classical diffusion. The time-
dependent Schrödinger equation in imaginary time, β , becomes:

∂Ψ(r,β )
∂β

= λ∇
2
Ψ(r,β )−V (r)Ψ(r,β ). (2)

Expanding Ψ(r,β ) in the eigenstates of the Hamiltonian it is easy to see that:

Ψ(r,β ) = ∑
i

aiφi(r)e−βεi ,

∝ a0φ0(r)+∑
i

aiφi(r)e−β (εi−ε0). (3)

As β gets large, all exited states are exponentially suppressed. Imaginary time prop-
agation projects the trial wave function to the ground state of the system.

The standard DMC algorithm is obtained by considering the mixed distribution
f (r,β ) =Ψ(r,β )ΨT (r), where ΨT is any given trial wave function. If Eq. 2 is mul-
tiplied by ΨT and a few simple manipulations are performed, the partial differential
equation for f (r,β ) is given by:

∂ f (r,β )
∂β

= L̂ f (r,β ), (4)

= λ∇
2 f (r,β )−λ∇ · [ f (r,β )F(r)]+ [ET −EL(r)] f (r,β ),

where we introduced an overall shift in the energy. F is the quantum force defined by
F = ∇ ln |Ψ |2 and EL(r) is the local energy. Eq. 4 can be mapped to a drift-diffusion
random walk with a branching (death/birth) process. The standard DMC algorithm
combines a propagation of a population of ’walkers’ using a Langevin equation
with a branching step. After each Langevin step, each walker gains a weight in the
population given by:

ωi(t) = e−
τ
2 (EL(ri(t))+EL(ri(t−τ))−2ET ), (5)

so that at time step k, the total weight of walker i is given by:

ωi(tk) =
k

∏
j=1

ωi(t j), (6)

1 See §1.4 for more details on wave functions and optimization methods.
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and averages are obtained from weighted sums:

< O >=
∑

N
i=1 ∑

Npop
p=1 ωp(ti)O(rp(ti))

∑
N
i=1 ∑

Npop
p=1 ωp(ti)

. (7)

This algorithm is typically called pure DMC.
Since the multiplicative nature of the weights lead to very large fluctuations and

potential instabilities in the time propagation, a branching scheme is introduced
where instead of storing weights during the simulation, walkers are stochastically
replicated (or killed) using

Nadd(t) = INT
[
e−

τ
2 (EL(ri(t))+EL(ri(t−τ))−2ET )+ γ

]
(8)

where γ is a uniformly distributed random number in [0,1] and INT is the integer
part of its argument. The role of ET is now apparent. By appropriately choosing ET ,
the population of walkers can be stabilized. In modern implementations, a combi-
nation of both weights and branching is used to improve efficiency [?]. Weights are
maintained for a few steps, but their fluctuations are controlled by branching when
they get outside of specified bounds.

1.1.2 Fermions

As mentioned previously, we must take special care to treat the antisymmetric na-
ture of wave functions for fermions. Since the electronic Hamiltonian is invariant to
particle exchange, the methods described above can be applied to fermions as long
as we restrict them to the antisymmetric sector of the Hilbert space. The ground
state wave function corresponds to the lowest antisymmetric eigenstate of the elec-
tronic Hamiltonian, which is not the global minimum of the entire Hilbert space.
This means that any method that does not explicitly limit solutions to antisymmetric
functions will converge to the incorrect result (e.g. to a bosonic state).

An antisymmetric wave function will contain both positive and negative regions
in configuration space (assuming a real wavefunction). Since, a probability distri-
bution has to be non-negative, we must include the signs in the estimators. This
causes a severe problem because the normalization of the resulting average will be
proportional to the difference between the positive and negative volumes in configu-
ration space. Particle symmetry implies that those volumes must be equal and, since
the sampling is bosonic, the normalization will go to zero as the simulation time
increases.

This can be seen if we assume that we sample the states according to the abso-
lute value of the original distribution. In this case, the estimator for the energy, for
example, becomes:

< E >=
∑i ω(ri)EL(ri)

∑i ω(ri)
, (9)
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where ω(ri) is {+1,−1} depending on the sign of the wave function. As the number
of samples increases, both numerator and denominator approach zero, and the sig-
nal/noise ratio decreases. It can be shown that the efficiency of this direct approach
decreases exponentially with the number of particles [4]. This exponential scaling
with the number of particles is known as the Fermion Sign Problem.

There is currently no exact solution to the sign problem for general systems. The
standard approach to perform stable simulations is known as the fixed-node approx-
imation [7].2 In this approximation, the simulation is restricted to a nodal pocket of
the trial wave function, and walkers are not allowed to cross nodes. The resulting
energy represents an upper bound to the exact ground state energy, becoming exact
when the nodes of the trial wave function coincide with those of the exact solution.
The fixed node method combined with a projection technique, such as DMC, pro-
duces the best energy consistent with the chosen nodal structure. This makes results,
in principle, sensitive to the nodal structure. In practice, results are found to be very
accurate.

1.2 Path Integral Monte Carlo

Next we briefly describe path integral Monte Carlo (PIMC), which is similar to
DMC but can treat systems at non-zero temperatures; a many-body density matrix
replaces the trial wave function. For a more complete overview of the method and
its application to fermion systems, see Refs. [4] and [5] respectively.

1.2.1 Path Integrals

To begin, we define the solution to the Bloch equation dρ/dβ = −Ĥρ , the many
particle density matrix, to be

ρ(R,R′;β ) = 〈R | e−β Ĥ | R′〉 (10)

where R≡ (r(1), . . . ,r(N)) with r(i) specifying the spacial coordinates of the ith of N
particles, and β ≡ 1/kBT , the inverse temperature. The quantum statistical partition
function is defined as the trace of the density matrix,

Z(β ) = Tr(ρ) =
∫

dR〈R | e−β Ĥ | R〉=
∫

dRρ(R,R;β ). (11)

The expectation value of any observable may be computed from this definition as

〈Ô〉= Tr(Ôρ)/Z = Tr(Ôρ)/Tr(ρ). (12)

2 Note that this assumes real wave functions. If otherwise, the fixed-phase approximation may be
used. [?]
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Using the product property of the density matrix M times, such that β = Mτ , we
discretize the partition function integral. The partition function becomes

Z(β ) =
M−1

∏
i=0

∫
ddRiρ(R0,R1;τ)ρ(R1,R2;τ) . . .ρ(RM−1,R0;τ). (13)

Thus, we have effectively reduced the problem of finding a low temperature density
matrix to one of finding the product of many high temperature density matrices. For
each, we define an action

S(Ri,R j;τ)≡−ln[ρ(Ri,R j;τ)] (14)

which may be broken into kinetic and potential parts. For systems with a long-range
interaction, a variant of the Ewald summation technique is used [6]. Finally, in order
to properly account for the particle statistics of the simulated system, we must sum
over permutations P , giving

Z(β ) =
1

N! ∑
P

(±1)P
∫

R→PR
dRte−S[Rt ] (15)

where the action S represents the path starting at R and ending at PR.

1.2.2 Restricted Paths

Once again, with fermions negative terms enter in this sum, leading to a sign prob-
lem. As was done in the previous discussion of DMC, one way to circumvent this
issue is to impose a nodal constraint [7]. We define the nodal surface ϒR?β for a
given point R? and inverse temperature β to be

ϒR?β = {R | ρ(R,R?;β ) = 0} (16)

which is a (dN−1)-dimensional manifold in dN-dimensional configuration space.
Here, R? is dubbed the reference point, as it is needed to define the nodal surfaces.
Inside a nodal cell, by definition the sign of the density matrix is uniform. Using
Dirichlet boundary conditions, we may solve the Bloch equation within each nodal
cell. We define the reach Γβ (R) as the set of all continuous paths Rτ , for which
ρ(Rτ ,R?,β ) 6= 0 for all intermediate τ (0 < τ ≤ β ), i.e. a node-avoiding path.

Γβ (R) = {γ : R→ R′ | ρ(R,Rτ ;β ) 6= 0}. (17)

It is clear then that all paths contributing to the Bloch equation solution must
belong to this reach. For all diagonal contributions, odd permutations must cross a
node an odd number of times and thus are not allowed by this constraint.3 In fact,
they are exactly cancelled by all paths of node-crossing even permutations. This

3 Note, for non-diagonal elements the sum over odd permutations must be retained.
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leaves us with the following expression for the density matrix,

ρ(R,R;β ) =
1

N! ∑
P,even

∫
γ∈Γβ (R)

γ:R→PR
DRτ e−S [Rτ ]/h̄. (18)

We have thus turned the sign-full expression for the density matrix into one
which includes only terms of a single sign, allowing efficient computation. How-
ever, because ρ appears on both sides of Eq. 18, this requires a priori knowledge
of the density matrix nodal structure, which is generally unknown. To escape this
self-consistency issue, an ansatz density matrix that approximates the actual nodal
structure, is introduced. This ansatz is a solution to the Bloch equation inside the
trial nodal cells and obeys the correct initial conditions, providing an exact solution
only when its nodes are the true nodes of the density matrix. This method is often
called restricted PIMC (RPIMC).

For spinless fermions, it is often simplest to write down the anti-symmetrized
density matrix as the Slater determinant of single-particle distinguishable density
matrices, ρ(R,R?;β ) = 1

N! detρi j? where

ρi j? = (4πλβ )−d/2e−
(ri−r j?)

2

4λβ . (19)

Generally, we expect this approximation to be best at high temperature and when
correlation effects are weak. Furthermore, due to the constraint of translational in-
variance, free particle nodes are quite reasonable for homogeneous systems, specif-
ically in the WDM regime. As a simple illustration, Fig. 1 shows the exact, the
ground state, and the free particle nodal structures for a system of three particles in
two dimensions. One can see that in the classical limit, the exact nodes match those
of free particles, while in the T → 0 limit, the nodes are that of the ground state.
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Fig. 1 An example nodal surface for three particles in two dimensions. The nodal line cuts through
two of the particles (blue), defining the reach of the third (red). Here all time slices occupy the same
point in space, showing how the exact nodal structure (a) is the precise extrapolation from the
ground state nodal structure (b) to those of free particles (c). The third axis in (a) and (c) represents
β , the inverse temperature.
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1.2.3 Possible Sources of Error

We now discuss some of the sources of error. The largest is caused by the finite-size
of the simulation cell. This error may be controlled either by performing multiple-
sized simulations and extrapolating to the thermodynamic limit or by using an ana-
lytic correction. For homogeneous systems with long-range interactions, we can use
the finite temperature extension of the analytic correction given in Ref. [8] as we
discuss in §1.4.

The second largest error comes from the discretization of imaginary time by τ .
While the naive Trotter breakup of exp[−Ŝ] ≈ exp[−T̂ ]exp[−V̂ ] has error ∼ τ2,
one can often do better. Specifically, we employ the pair product approximation for
the action which has error ∼ λτ3 [4]. For fermions a time-step error arises from
the nodal constraint when paths cross and recross a node within τ . Though these
contributions may be difficult to separate, one can always extrapolate to the τ → 0
limit by adding more time slices. The third controllable error is due to the statistical
fluctuations of the Monte Carlo algorithm itself. However, as in DMC, one may run
the simulation longer to provide smaller errors on measured quantities.

The final source of error, the nodal error, is the most problematic since it is uncon-
trollable. As mentioned, there is no a priori way to know the exact nodal structure.
PIMC’s variational principle is through the free energy, as opposed to the internal
energy in DMC. Thus one possible solution is parameterize the nodal ansatz, and
then minimize the free energy by varying the parameters. However, the free energy
is not usually easily obtainable; it may require a thermodynamic integration. Nev-
ertheless, in the systems mentioned below, estimates suggest that the nodal error
arising from the free-particle ansatz to be smaller than the statistical error.

1.3 Coupled Electron Ion Monte Carlo

In applying QMC methods to WDM, systems of nuclei and electrons must be con-
sidered. The large nucleon-electron mass ratio implies a wide separation of time
scales. Because of this, first principles methods based on Density Functional The-
ory (DFT), find the adiabatic, or Born-Oppenheimer (BO), approximation to be very
useful even for the lightest element, hydrogen. Conversely, the QMC methods de-
scribed so far ignore this separation and treat nuclei and electrons on equal footing,
causing difficulties. The imaginary time step of the path integral representation (both
in DMC and PIMC) is imposed by the light electron mass. In DMC this means that
nuclear “dynamics” (the speed of sampling configuration space) is much slower
than electron “dynamics” requiring very long (and time consuming) trajectories. In
PIMC the separation of time scales presents itself as a separation in the regions
where thermal effects are relevant: in high pressure hydrogen for instance nuclear
quantum effects becomes relevant below ∼ 1000K−5000K where electrons are, to
a very good approximation, in their ground state. Performing PIMC in this region
of temperatures requires very long electronic paths causing a slowing down of the
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exploration of configuration space and effectively limiting the ability of PIMC to
perform accurate calculations at low temperatures.

To study this interesting temperature region, a QMC method based on the BO
approximation, the Coupled Electron-Ion Monte Carlo (CEIMC) has been devel-
oped [1]. In CEIMC a Monte Carlo calculation for finite temperature nuclei (either
classical or quantum represented by path integrals) is performed using the Metropo-
lis method with the BO energy obtained by a separate QMC calculation for ground
state electrons. CEIMC has been extensively reviewed in refs. [1, 9]. Here, we only
briefly report the main technical features of the method.

1.3.1 Penalty method

In CEIMC the difference of BO energies of two nearby nuclear configurations in a
MC attempted step, as obtained by an electronic QMC run, is affected by statistical
noise which, if ignored, results in a biased nuclear sampling. To cope with this situa-
tion either the statistical noise needs to be reduced to a negligible value by long elec-
tronic calculations (very inefficient), or the Metropolis acceptance/rejection scheme
needs modifications to cope with noisy energy differences. The latter strategy is im-
plemented in the Penalty Method [10] which enforces detailed balance to hold on
average over the noise distribution. The presence of statistical noise causes an ex-
tra rejection with respect to the noiseless situation. An extra “penalty” defined as
the variance of the energy difference over the square of the physical temperature
is added to energy differences. Therefore running at lower temperatures requires a
reduced variance to keep an acceptable efficiency of the nuclear sampling. Small
variances can be obtained if correlated sampling is used to compute the energy of
the two competing nuclear configurations. In an attempted nuclear MC step, a single
electronic run is performed with a trial wave function which is a linear combination
of the wave functions of the two nuclear configurations considered. The BO energy
of the two nuclear configurations is obtained by a reweighting procedure which
provides energy differences with a much reduced variance with respect to perform-
ing two independent electronic runs if the “distance” between the two nuclear con-
figurations is limited (i.e. the overlap between the trial wave functions of the two
configurations is large) [11]. This strategy allows an efficient sampling of nuclear
configuration space for high pressure hydrogen and helium down to temperature as
low as ∼100-200K.

1.3.2 PIMC

When nuclear quantum effects are included using a path integral representation (see
§1.2), the relevant inverse temperature in the penalty method is the imaginary time
discretization step τ , so that no loss of efficiency is experienced when lowering
the temperature (i.e. taking longer paths). For quantum protons in high pressure
hydrogen, CEIMC can be used to efficiently study systems at temperatures as low
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as ∼50K. In the present implementation of nuclear quantum effects in CEIMC, we
introduce an effective pair potential between nuclei and use the pair density matrix
(see §1.2). The residual difference between the effective pair potential and the BO
energy is considered at the primitive approximation level of the Trotter break-up of
the proton propagator [1]. In high pressure hydrogen (rs = 1.40) it is found that with
this strategy, τ−1 '4500K is enough to reach convergence of the thermodynamics
properties, which allows to study systems at low temperature with a limited number
of time slices (≤100).

1.3.3 VMC vs RQMC

The main ingredient of CEIMC is the electronic QMC engine used to compute the
BO energy. As mentioned a very important aspect for the efficiency of CEIMC is
the noise level which is related to the variance of the local energy. In ground state
QMC (see §1.1) the “zero variance principle” applies: if the trial wave function is
an eigenfunction of the Hamiltonian, the local energy is no longer a function of
the electronic coordinates and a single calculation provides the exact corresponding
eigenvalues. Therefore by improving the trial wave function and approaching the
exact ground state, the variance of the local energy decreases to zero. In connection
with CEIMC, this is important not only for the accuracy of the BO energy but also
for the efficiency of the nuclear sampling since the extra rejection due to the noise
is reduced for a more accurate trial wave function. For high pressure hydrogen we
have devised a quite accurate trial function of the Slater-Jastrow, single determinant,
form. The Slater determinant is built with single electron orbitals, obtained by a
self-consistent DFT solution, expressed in terms of quasi-particle coordinates with
a backflow transformation. The Jastrow part has an electron-proton and electron-
electron RPA Jastrow plus two-body and three-body numerical terms [12, 13].

To go beyond VMC accuracy in CEIMC we have implemented the so called Rep-
tation QMC method (RQMC) [14, 1]. The theoretical basis of RQMC and DMC are
the same, however their implementations are quite different. In DMC a generalized
drift-diffusion-source equation is solved which represents the Schroedinger equa-
tion in imaginary time. An initial population of replicas of the system is propagated
in imaginary time, and the projected wave function at a given time is represented
by the population of replicas at that time. In RQMC a single replica is considered,
and the entire evolution of the system is represented by an imaginary time path
which, as in PIMC, is kept in the memory of the computer. The problem is there-
fore transformed into sampling the configuration space of such paths which can
be accomplished using Metropolis Monte Carlo. Expectations of the ground state
wave function are calculated in the middle of the path [1]. Since RQMC uses an ex-
plicit representation of the statistical weight of each path, the reweighting procedure
needed for estimating energy differences in CEIMC can be more easily applied in
RQMC than in DMC; this is the reason for our choice of RQMC in CEIMC.
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1.4 Improved wavefunctions and density matrices

The simplest and most common trial wave function used in QMC calculations is the
Slater-Jastrow form, ΨT (r) = D↑D↓e−J , where D↑ is a Slater determinant of single
particle states and J is a Jastrow factor. The orbitals in the determinant are typically
obtained from a mean-field method, while the Jastrow term incorporates correla-
tion directly and typically includes terms involving electron-ion, electron-electron,
and electron-electron-ion terms. Over the last decade, many wave function forms
have been explored. Some of these include: Pfaffians [15], generalized valence bond
(GVB) [16], antisymmetrized geminal power (AGP) [17], backflow transformation
[18], and multi-determinant expansions [19, 20, 21, 22]. In particular, the multide-
terminant form has shown great promise in molecular calculations, leading to wave
functions with controlled accuracy capable of reaching chemically accurate results,
and competing with the best methods in quantum chemistry. This wave function
has the form: ΨT (r) = e−J

∑k ckD↑kD↓k , the linear parameters, ck, as well as all the
variational parameters in the Jastrow are optimized using VMC.

Over the last decade, robust and efficient wave function optimization methods
have been developed [23, 24]. Among the most notable is the linear optimization
method of Umrigar and co-workers [25]. In this case, the Hamiltonian is diagonal-
ized in the sub-space obtained by linearizing the wave function derivatives with re-
spect to its variational parameters. For linear parameters, as in the multi-determinant
expansion, the resulting sub-space is complete, and the solution to the eigenvalue
equations is the lowest energy solution. Rescaling of the lowest energy eigenvector
is allowed when non-linear parameters are included, either by a line minimization,
controlling the normalization, or any other criterion, to speed the convergence to the
minimum. Typically, fewer than ten iterations are required, each using an increasing
number of Monte Carlo steps. The continuous development of robust wave function
optimization methods with the implementation and use of flexible trial wave func-
tion forms has lead to a large improvement in the accuracy of QMC methods over
the last several years.

Density matrices may be improved in the same fashion, though all proper
breakups of the action will converge to the exact density matrix given small enough
time step τ . Several approximations which include higher-order electronic correla-
tions have been proposed, though generally the pair product approximation is cho-
sen as the best compromise between accuracy and efficiency [4]. For fermions, how-
ever, there is still a need to devise better nodal density matrices. At temperatures
above zero, QMC methods obey a variational principle in the free energy (as op-
posed to the internal energy at zero-temperature). To this end, there have been some
recent efforts to improve the nodal ansatz used in PIMC by minimizing the free
energy [28]. The inclusion of backflow effects has also been proposed, though not
tested, as a possible way forward. The literature discusses several recent attempts to
improve nodal surfaces [27, 28].
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1.5 Finite size effects and extrapolations

One of the main approximations in simulations is to reach the thermodynamic limit
by doing simulations with a microscopic system. Simulations are limited today to
using fewer than several thousand electrons; typically this is used to model a phys-
ical system which contains enormously more electrons. There has been significant
progress on this during the past decade. For WDM these methods are particularly
appropriate since particle correlations are, for a large part, local, and if the correct
boundary conditions are applied, a supercell can mimic an infinite system. To min-
imize the finite size errors, periodic boundary conditions are used. The dependence
of the energy on the size of the simulation cell is often the largest systematic error in
QMC calculations. Finite size effects are larger in QMC than in mean field methods
because electrons are explicitly represented.4 Fortunately, they can be minimized by
several methods. We will discuss a recent analysis of finite system effects, first of
the kinetic energy, and second of the potential energy.

If calculations are done with periodic boundary conditions, the largest effect for
systems with a Fermi surface at low temperture comes from the kinetic energy,
arising from the discontinuous filling of the shells in k-space. In the original calcu-
lations of the HEG, calculations were done with a sequence of closed shells, and
Fermi Liquid theory was used to extrapolate to the thermodynamic limit [50]. Al-
though this works well for homogeneous systems with small unit cells, it does not
work as well for more complex systems, having larger cells, or in a liquid. General
boundary conditions on the phase are:

Ψ(r1 +L,r2, . . .) = eiθ
Ψ(r1,r2, . . .) (20)

where L is a lattice vector of the supercell. If the twist angle θ is averaged over,
(twist averaged boundary conditions or TABC), most single-particle finite-size ef-
fects, arising from shell effects in filling the plane wave orbitals, are eliminated [29].
In fact, within the grand canonical ensemble, there are no single-particle kinetic fi-
nite size effects. One can understand this in terms of the momentum distribution
since the kinetic energy per electron may be written as

TN/N =
(2π)3

2Ω
∑
k

k2
ρN(k) T∞ =

1
2

∫
dkk2

ρ∞(k) (21)

where ρN and ρ∞ are the momentum distribution for an N electron and infinite sys-
tems respectively. Twist averaging gets rid of the largest approximation, namely the
“sampling” of k-space, all the while still using ρN(k).

The potential energy per electron is the integral over the two particle correlation
function, conveniently expressed in k-space in terms of the structure factor (Sk):

VN = ∑
k

VN(k)SN(k) V∞ =
∫

dkV∞(k)S∞(k) (22)

4 All exact methods that work with finite systems share this difficulty.
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Here VN(k) = V∞(k) = 4πk−2 is the Fourier transform of the Coulomb interaction,
and we have assumed that the Ewald image procedure is used to treat the long-range
interaction in a periodic system. As with the expression for the kinetic energy, we
assume that SN(k) = S∞(k). However, twist averaging does not convert the sum in
Eq. 22 to an integral since S(k) is a two-particle quantity; the values of k that can
be computed are all in the reciprocal lattice of the supercell no matter what the
twist angle. The dominant finite size error comes from the contribution near k = 0.
For small values of k we have that S(k) = ck2. Integrating over the sphere k <
π/L (assuming a cubic supercell) one gets a correction 4πk3

0c. This procedure was
introduced in ref. [30], and thorough analysis and comparison with other methods
was performed in ref. [31].

2 Applications

With the above methods, the QMC community has been able to study several sys-
tems in WDM. Here provide recent calculations of the electron gas, hydrogen, he-
lium, carbon, and water, and address their importance to WDM research.

2.1 Electron Gas

The one-component plasma (OCP), a fundamental many-body model, consists of a
single species of charged particles immersed in a rigid neutralizing background. For
electrons, the OCP is a model of simple metals and is often called the homogeneous
electron gas (HEG) or jellium. It is customary to define the natural length scale
rsaB ≡ (3/4πn)1/3 and energy scale Ry = e2/2aB, where n is the system density.
When rs, the Wigner-Seitz radius, is small (high density) (rs→ 0), the kinetic energy
term dominates and the system becomes qualitatively similar to a non-interacting
gas. At low density (rs → ∞), the potential energy dominates and the system is
predicted to form a Wigner crystal [32]. In 3D at intermediate densities, a partially
polarized state is predicted to emerge [33, 34].

Over the past few decades QMC calculations of the ground state HEG examined
each of these phases [3, 35]. In addition to determining phase boundaries, the results
of these studies have proven invaluable in the rigorous parameterization of func-
tionals in ground state density functional theory (DFT) [36]. In the opposite limit,
the classical OCP, whose equation of state depends only on the Coulomb coupling
parameter Γ ≡ e2/(rskBT ), has been studied extensively [37, 38, 39]. However,
the accuracy of these results quickly deteriorates as the temperature is lowered and
quantum correlations play a greater role [40]. This breakdown is most apparent in
the WDM regime where both Γ and the electron degeneracy parameter Θ ≡ T/TF
are close to unity.
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Fig. 2 (color online) Excess energies for rs = 4.0 (top) and rs = 40.0 (bottom) for the polarized
state. For both densities, the high temperature results fall smoothly on top of previous Monte Carlo
energies for the classical electron gas [37] (solid line). Differences from the classical coulomb
gas occur for Θ < 2.0 for rs = 4.0 and Θ < 4.0 for rs = 40.0. Simulations with the Fermion sign
(squares) confirm the fixed-node results at Θ = 1.0 and 8.0. The zero temperature limit (dotted
line) smoothly extrapolates to the ground-state QMC results of Ceperley-Alder [3] (dashed line).

There have been several attempts to tackle this strongly interacting regime
through both analytics (diagrammatic techniques, perturbative expansions, RPA,
etc.) and numerics (DFT, hypernetted-chain calculations, etc.). However, without a
reliable first principles benchmark, these efforts have gone unverified, except in the
weakly-interacting limits. Ref. [41], using the RPIMC method (see 1.2), provides
such accurate, first-principles thermodynamic data for the 3D HEG throughout the
WDM regime for both the fully spin-polarized ξ = 1 and unpolarized ξ = 0 systems.
This reference makes connections to both previous semi-classical and ground-state
studies, as well as matches on to exact, signful calulations where possible. In the
proceeding, we briefly touch on those results, as well as provide a new comparison
to existing finite temperature energy parameterizations.
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Fig. 3 (color online) Correlation energy Ec(T ) of the 3D HEG at several temperatures and densi-
ties for the unpolarized (top) and fully spin-polarized (bottom) states. Exact (signful) calculations
(squares) confirm the fixed-node results where possible. For comparison, we plot the Θ = 0.0
correlation energy used in LDA DFT calculations.

For densities ranging from rs = 1.0 to 40.0 and temperatures ranging from
Θ ≡ T/TF = 0.0625 to 8.0, energies, pair correlation functions, and structure fac-
tors were computed.5 At each density, we observe a smooth convergence to previous
semi-classical studies [37] at high temperature. In Fig. 2 we plot the total excess en-
ergy (Etot −E0)/E0) for the polarized system at all temperatures with rs = 4.0 and
40.0. At the highest temperatures, the results match well with the purely classi-
cal Monte Carlo results of Ref. [37] (solid line). For a few select points, the much
more time-consuming but more accurate, signful PIMC simulation (squares) was
done. These points which are essentially exact, i.e. without possible nodal error,
match well with fixed-node results. Finally, we know from Fermi liquid theory the

5 All data can be found in a repository hosted at http://github.com/3dheg/3DHEG.
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low-temperature gas should have a linear form for the heat capacity, and there-
fore a quadratic form for the internal energy. Thus for each density we fit the low-
temperature points to a quadratic function and extrapolate to 0T . Fig. 2 shows the
extrapolated results (dotted line) match well with the zero temperature QMC results
of Ceperley-Alder [3] (dashed line).

In Ref. [41], was found similar limiting agreement in both the calculated struc-
ture factors and pair correlation functions. Through this comparison against exist-
ing numerical and analytical data, we conclude the free-particle nodal approxima-
tion performs well for the densities studied. Further investigation is needed at even
smaller values of rs and lower temperatures in order to determine precisely where
this approximation begins to fail. Such studies will necessarily require algorithmic
improvements, however, because of difficulty in sampling paths at high density and
low temperature [42].

Finally, we have evaluated the exchange-correlation energy Exc, an essential
quantity in any DFT formulation, defined

Exc(T )≡ Etot(T )−E0(T ) (23)

where E0 is the kinetic energy of a free Fermi gas at temperature T . As is customary,
we further break up Exc into exchange and correlation parts,

Exc(T ) = Ex(T )+Ec(T ) (24)

where Ex(T ) is the Hartree-Fock exchange energy for a free Fermi gas at tempera-
ture T .

By calculating Etot(T ) through RPIMC simulations Ec(T ) was determined at all
studied densities and spin-polarizations. As one can see in Fig. 3, correlation effects
increase both with density (smaller rs) and temperature up to the Fermi tempera-
ture TF . Above this temperature, the electron gas begins to be less correlated. This
represents the point at which electron screening is a dominant effect, the interaction
becomes effectively short-ranged, and the Debye-approximation becomes relatively
accurate [43]. As the density increases, the relative temperature at which this oc-
curs decreases. At rs = 1.0 the maximal effect of interactions occurs very near TF ,
Θ = 1. Most notably, we see a departure from the T = 0.0 correlation energy used
ubiquitously in both ground state and finite temperature LDA DFT calculations.
This discrepancy is significant throughout the WDM regime, calling into question
the use of ground state correlation functionals at such temperatures and densities.

We conclude with a brief comparison of these calculations to previous estima-
tions of the 3D HEG correlation energy. Such parameterizations generally fall into
two categories: those which extend down from the classical regime and those which
assume some interpolation between the T = 0 and high-T regimes. From the former
group, in Fig. 4, we plot Ec coming from Debye-Huckel (DH) theory which assumes
short-ranged interactions and the classical Monte Carlo simulations of Hansen, et.
al. of the full Coulomb system both with Wigner-Kirkwood corrections (H+WK)
and without (H). Clearly these methods do not perform well in the quantum regime
below the Fermi temperature since they lack quantum exchange.
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Fig. 4 (color online) Correlation energy Ec(T ) of the 3D HEG at rs = 4.0 for the unpolarized
ξ = 0 state from the above calculations (RPIMC) and several previous parameterizations. The lat-
ter include Debye-Huckel (DH), Hansen (H), Hansen+Wigner-Kirkwood (H+WK), random phase
approximation (RPA), Tanaka and Ichimaru (TI), and Perrot and Dharma-wardana (PDW). We also
include the ground state Θ = 0.0 result for comparison.

The random phase approximation (RPA), from the latter group, is a reasonable
approximation in the low-density, high-temperature limit (where it reduces to DH)
and the low-temperature, high-density limit, since these are both weakly interacting
regimes. Its failure, however, is most apparent in its estimation of the equilibrium,
radial distribution function g(r) which becomes negative for stronger coupling. Ex-
tensions of the RPA into intermediate densities and temperatures have largely fo-
cused on constructing local-field corrections (LFC) through interpolation since di-
agrammatic resummation techniques often become intractable in strongly-couplled
regimes. Singwi, et. al. [44] introduced one such strategy relying on two assump-
tions. First, they use the static polarization-potential approximation allowing one to
write the LFC G(k,z)≡ G(k,z = 0)≡ G(k). Next they assume the two-particle dis-
tribution function is a function of the n(r) and g(r) which allows a self-consistent
solution for G(k). Tanaka and Ichimaru [45] (TI) extended this method to finite
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temperatures and provided the shown parameterization of the 3D HEG correlation
energy. A similar method (not shown) by Dandrea, et. al. uses the Vashista-Singwi
LFC [46] to interpolate between the high- and low-temperature limits. Both meth-
ods appear to perform marginally better than the RPA at all temperatures, though
both still fail to produce a positive-definite g(r) at values of rs > 2.

A third, more recent approach introduced by Perrot and Dharma-wardana (PDW)
[47] relies on a classical mapping where the distribution functions of a classi-
cal system at temperature Tc f , solved for through the hypernetted-chain equation,
reproduce those for the quantum system at temperature T . In a previous work,
PDW showed such a temperature Tq existed for the classical system to reproduce
the correlation energy of the quantum sytem at T = 0 [48]. To extend this work
to finite temperature quantum systems, they use the simple interpolation formula
Tc f =

√
T 2 +T 2

q . This interpolation is clearly valid in the low-T limit where Fermi
liquid theory gives the quadratic dependence of the energy on T . Further in the high-
T regime, T dominates over Tq as the system becomes increasingly classical. The
PDW line in Fig. 4 clearly matches well with the RPIMC results in these two lim-
its. It is not surprising, however, that in the intermediate temperature regime, where
correlation effects are greatest, the quadratic interpolation fails. A contemporary,
but similar approach by Dutta and Dufty [49] uses the same classical mapping as
PDW which relies on matching the T = 0 pair correlation function instead of the
correlation energy. While we expect this to give more accurate results near T = 0,
we would still expect a breakdown of the assumed Fermi liquid behavior near the
Fermi temperature.

Future electron gas work will include creating a new parameterization of the
correlation energy which uses the above data directly. In doing so, simulations at
higher densities and both lower and higher temperatures may be necessary in order
to complete the interpolation between the ground state and classical limits.

2.2 Hydrogen

Hydrogen is the simplest element of the periodic table and also the most abundant el-
ement in the Universe. Together with its isotopes, deuterium and tritium, it occupies
a special place in WDM since it is particularly relevant in astrophysics, planetary
physics and nuclear energy applications.

Because of its simple electronic structure, it has been instrumental in the devel-
opment of quantum mechanics and remains important for developing ideas and the-
oretical methods. QMC is not an exception, and a DMC investigation of the ground
state of hydrogen across the pressure-induced molecular dissociation regime ap-
peared as early as 1987 [50], followed by more recent and accurate studies [51, ?].
Few years later RPIMC was developed to investigate the WDM regime of hy-
drogen [52, 53, 54] and to study the primary and secondary Hugoniots [?, 55].
RPIMC predictions for the principal Hugoniot of deuterium were first in disagree-
ment with pulsed laser-produced shock compression experiments [56, 57, 58], but
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were later confirmed by magnetically generated shock compression experiments at
the Z-pinch machine [59, 60, 61, 62, 63, 64] and by converging explosive-driven
shock waves techniques [65, 66]. A general agreement between RPIMC and First
Principle Molecular Dynamics (FPMD) predictions is also observed [9] except at
the lowest temperatures that could be reached by RPIMC (∼ 10000K). There the
Hugoniot from FPMD is slightly softer than from RPIMC (see Fig. 13 of ref. [9]).6

Lower temperatures cannot be easily reached by RPIMC without reducing the level
of accuracy. However, most of the interesting phenomena like molecular dissoci-
ation under pressure, metallization, solid-fluid transition, a possible liquid-liquid
phase transition and its interplay with melting, the various crystalline phases and the
transition to the atomic phases [9], occur at lower temperature out of the reach of
RPIMC. Investigating this regime by QMC methods has been the main motivation
in developing CEIMC. The other motivation is to benchmark the much more de-
veloped (and less demanding) alternative theoretical method, namely FPMD based
on DFT. Indeed the numerical implementation of DFT is based on approximations
(the exchange-correlation functional) the accuracy of which can only be established
against experiments or, better, against more accurate theories. As mentioned earlier,
QMC is based on the variational principle and therefore has an internal measure of
accuracy.

CEIMC has been applied to investigate the WDM regime and benchmark FPMD
[67, 68, 69] and to investigate the Liquid-Liquid phase transition (LLPT) region
in hydrogen [70, 71]. The emerging picture is that a weak first-order phase transi-
tion occurs in hydrogen between a molecular-insulating fluid and a metallic-mostly
monoatomic fluid. At higher temperature, molecular dissociation and metallization
occur continuously. However the precise location of the transition line and the criti-
cal point are still matter of debate since several levels of the theory provide different
locations. Within FPMD-DFT the location of the transition line depends strongly on
the exchange-correlation functional employed and on whether classical or quantum
protons are considered [72]. Transition lines from the PBE and vdW-DF2 approxi-
mations differ by roughly 200-250GPa, the PBE one being located at lower pressure.
The PBE melting line with quantum protons is not in agreement with experiments,
which highlights the failure of the PBE approximation when employed together with
the quantum description of the nuclei. On the other hand, optical properties for the
vdW-DF2 approximation are in agreement with experiments supporting the use of
this functional for hydrogen in the WDM regime. The LLPT line from CEIMC lies
in between the lines from PBE and vdW-DF2 functionals [70, 71]. However, those
calculations were limited to classical protons and nuclear quantum effects are still
to be considered.

Note that at higher temperatures and pressures, when molecules are entirely dis-
sociated, the system is in the metallic state and protons can be considered classical
particles, PBE and CEIMC have been found to be in very good agreement [69].

Our current understanding of the metallic state and metallization phenomena in
high pressure hydrogen is mostly based on single electron theory [73]. To the best of

6 Note that both theories are compatible with experiments because of the large uncertainty of the
latter.
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our knowledge there has only been one attempt to compute the DC conductivity of
hydrogen in the WDM regime by a QMC based methods [74]. Protonic configura-
tions at finite temperature are generated by CEIMC while the Correlation Function
QMC [75, 76] is employed to compute the low energy many-body excitation spec-
trum of the liquid. Combining the excitation energies with the Green-Kubo formula,
the electrical conductivity of hydrogen is obtained based entirely on QMC; these
calculations do not suffer from self-interaction errors but suffer from other limita-
tions, notably the numerical difficulty in obtaining accurate properties of excited
states because of the QMC sign problem, and large finite cell size effects. However,
good agreement with the limited data from shock experiments measurements was
obtained [77].

Much more effort is needed in developing QMC method for WDM, in particular
to explore the sensitivity of CEIMC to orbitals from DFT with different functionals
and to further develop the method for transport and dynamical properties.

2.3 Helium, Carbon, and Water

While the application of quantum Monte Carlo methods in the WDM regime has
been focused mainly on hydrogen, there has been recent interest in the extension
of these methods to other materials in the periodic table. The first application of
PIMC to elements beyond hydrogen involved the study of the phase diagram and
equation of state of helium [78] and helium-hydrogen mixtures [79]. Similar to the
case of pure hydrogen, the properties of hydrogen-helium mixtures are critical to the
development of interior models for giant planets. Combining DFT and PIMC calcu-
lations, B. Militzer [80] was able to generate an equation of state for helium purely
based on first-principles calculations, covering many orders of magnitude in density
and temperature. This work represents a big step forward in the understanding of
this material at extreme conditions and is an important piece in the development of
next-generation planetary models.

The PIMC method was recently extended to other first row elements in the pe-
riodic table, including carbon and oxygen [81]. These calculations employed all-
electron simulations of carbon and water at extreme conditions and covered temper-
ature ranges from 104−109 K. These represent the first PIMC calculations including
core electrons and realistic materials. While some precautions must be taken when
including core electrons, the work of Driver, et al. shows a marked improvement
in the description of these materials at extreme temperatures and leads the way for
the extension of the method to other interesting materials. This work also shows the
need to generalize and improve the nodal constraint used in path integral simulations
at low temperatures, particularly when bound states appear. With the development of
optimization techniques for density matrices and the use of more complicated ansatz
for the nodal constraint, the method can become the standard simulation technique
at finite temperatures, applicable across the entire periodic table.
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3 Discussion

We conclude this review with a quick comparison of QMC to other existing methods
followed by a brief summary of some of the positive and negative aspects of QMC
methods for the simulation of WDM.

3.1 Comparison of Methods

As discussed throughout this chapter, several simulation techniques exist that can be
used in the study of materials in the WDM regime. Since most methods are based on
very different approximations, which work better in different regimes, it is impor-
tant to understand the regimes of applicability of methods as well as the expected
accuracy as a function of both temperature and density. For example, methods based
on density functional theory (DFT) are typically accurate at low temperatures, but
are limited to temperatures below 104 − 105 K due to computational difficulties
above this regime. Path integral methods, on the other hand, are very accurate at
high temperatures, but the accuracy is limited as the temperature is lowered. Cou-
pled Electron-Ion Monte Carlo (CEIMC), while being accurate also at low temper-
atures, becomes inefficient in the limit of very low temperatures. A combination of
all three methods can then be used to cover very wide ranges in density and tem-
perature, and at the same time producing accurate properties in an efficient way.
As a consequence, considerable work has been performed in order to compare the
accuracy and limitations of these methods in the regimes where they overlap.

In the case of helium, a recent study compared the EOS between DFT-based
BOMD and PIMC methods [80]. Excellent agreement between the two methods
is obtained at temperatures above 80,000 K. This work is particularly interesting
because it establishes the importance of the electronic temperature in DFT-MD cal-
culations. In the case of hydrogen at Mbar pressures, several comparisons between
DFT-MD, CEIMC, and PIMC have been made over the years [82, 2, 83]. In par-
ticular, CEIMC calculations have been used to benchmark DFT-MD simulations at
high pressure in the development of equation of state models for hydrogen from
first-principles [83, 22].

The recent work of Driver, et al. [84] on all-electron simulations of water and
carbon using path integral methods also offers a comparison to DFT-MD over an
extended temperature range (see Fig. 5). Similar to the case of hydrogen and helium,
a reasonable agreement between the two methods is observed at temperatures above
200,000 K. This result serves to emphasize PIMC’s role as an intermediary between
DFT and classical methods such as hyper-netted chain (HNC) or Debye-Huckel
theory.
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densities of 3.18 and 11:18 g=cm3, and carbon is studied at
4:17 and 12:64 g=cm3. The two densities in each case
correspond to a pressure of 1 and 50 Mbar at zero tem-
perature. Pressures P are plotted relative to a fully ionized
Fermi gas of electrons and ions with pressure, P0, in order
to compare the pressure contributions that result only from
particle interactions. PIMC and DFT-MD results for ðP"
P0Þ=P0 agree to better than 0.03 in the range of 2:5$ 105

to 7:5$ 105 K. Convergence tests show that results are
equally well converged in 24-atom and 8-atom simulation
cells. The excellent agreement allows for cross-validation
which implies that the zero-temperature DFT exchange-
correlation potential remains valid at high temperatures
and that the free-particle nodal approximation is valid in
PIMC calculations when atoms are only partially ionized.

The two methods have comparable computational cost in
the overlap region, but the DFT computational cost starts to
become prohibitive beyond 7:5$ 105 K, and free-particle
nodes break down below 2:5$ 105 K.
In addition, Fig. 2 compares the instantaneous pressures

obtained for a fixed configuration of carbon nuclei at
various electronic temperatures using PIMC calculations,
DFT calculations with all-electron pseudopotentials, and
DFT calculations with VASP PAW pseudopotentials.
Agreement between PIMC calculations and DFT calcula-
tions with all-electron pseudopotentials is very good from
1$ 105 to 2$ 106 K. However, beyond 7:5$ 105 K,
PAW DFT calculations no longer predict the correct tem-
perature dependence, indicating that the missing contribu-
tions of core excitations to the total energy become
significant. All-electron DFT calculations are too computa-
tionally demanding to perform calculations with moving
nuclei.
In Fig. 3, the internal energies E are plotted relative to

the ideal internal energyE0. PIMC and DFT-MD results for
ðE" E0Þ=E0 agree to better than 0.04 in the range of
2:5–7:5$ 105 K for water and carbon. Convergence tests
show that results are equally well converged in 24-atom
and 8-atom simulation cells. Our PIMC calculations extend
the equations of state to the weakly interacting plasma limit
at high temperatures, in agreement with the Debye-Hückel
model. The DFT-MD and PIMC methods together form a
coherent equation of state over all temperatures.
Figure 4 shows nuclear pair-correlation functions for

carbon and water using PIMC and DFT-MD calculations.
Figure 4(a) demonstrates the sensitive temperature depen-
dence of structural properties for carbon. Water pair corre-
lations are shown in Fig. 4(b) at a single temperature of
7:5$ 105 K. Simulations use a 24-atom simulation cell
size, which converges pair-correlation curves to better than
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Fig. 5 A direct comparison of the excess energy in (a) Carbon and (b) Water, calculated through
DFT-MD, PIMC, and Debye-Huckel theory. From this plot, one can conclude that PIMC may act
as a bridge between the two quicker computational methods. [84]

3.2 Positives

In the spirit of this chapter being used a reference, we conclude by listing the specific
areas where QMC performs well and where QMC still needs improvement. We
begin with the things QMC is known to do well:

• Strong correlation is not a problem for QMC, in fact strong correlation is when
QMC works best, e.g. in a Wigner crystal. Also there is no problem with the self-
interaction, e.g. the formation of hydrogen molecules is exactly captured. For the
singlet state of an isolated molecule, there is also no fermion sign problem.

• Because of its high accuracy, QMC usually serves as a benchmark for other meth-
ods. As an example, QMC provides the exchange-correlation energy of the elec-
tron gas at zero temperature. And, as discussed in §2.1, QMC can now providing
high temperature correlation energy for the electron gas. Other properties besides
the energy are possible to compute, e.g. correlation functions and static response
functions.

• QMC is the most general method of simulating quantum systems. For example,
one can add nuclear zero point motion of the ions, or include other quantum par-
ticles such as positrons, study bose condensation, all within the same framework.



Quantum Monte Carlo techniques and applications for warm dense matter 23

• Adding additional randomness typically does not cause a large increase in com-
puter resources. Adding randomness simply increases the dimensionality of the
integrals by a small amount, while the computational efficiency depends on the
variance and not on the number of integration variables. For other methods,
where the quantum mechanics is computed deterministically, this is not true. This
means for problems where randomness is part of the problem, QMC methods are
not as expensive. Some examples of this averaging are twist average boundary
conditions to reduce finite size effects (see §1.5), a liquid as treated with CEIMC
(see §2.2), and proton zero point motion (see §2.2).

• QMC has reasonable scaling versus number of particles. The expensive part of
scaling is the fermion determinant that takes N3 operations if the matrix is full.
However at high temperature the matrix elements have a range of the thermal
deBroglie wavelength. For example, at the Fermi temperature, each row and col-
umn have only on the order of 10 elements with an value greater than 0.01. In
this case O(N) or O(N2) scaling should be possible.

• Perhaps most importantly, imaginary time path integrals give new understanding
of quantum statistical mechanics. A notable example is the winding number re-
lation to superfluidity [4]. There is a lot of work that needs to be be done in the
direction to find new relations between properties of restricted paths and quantum
observables.

3.3 Negatives

Finally, we list the issues that are currently holding up the applications of QMC to
problems in WDM:

• There are a number of convergence issues: the algorithms are mathematically
well-posed, but become inefficient as the needed limit is taken. For example,
there are finite size effects (taking the simulation box size to infinity) (see §1.5).
We do not view this problem as critical for simple systems, since the correlation
length in WDM is not that large, but it becomes more difficult for mixtures. An-
other example of a convergence issue is the Trotter error or time step error (see
§1.2). This also is not a practical limitation, but more efficient actions would in-
crease the overall efficiency. Most important are ergodic problems of the Markov
chain for restricted paths at low temperatures, aptly dubbed reference point freez-
ing [?]. We do not know a solution to this problem, but also, we do not know if
it is a fundamental problem.

• Imaginary time path intergrals can calculate imaginary time Green’s functions.
There are several problems in using this to find out dynamical response proper-
ties. First of all, this is equilibrium response only, true many-body dynamics is
yet to be developed. Some linear response is possible, but it is not known pre-
cisely what are its limitations. Even within equilibrium linear response theory,
there are two serious problems. First, the restricted path method for solving the
sign problem changes the dynamics, even with the correct nodes. Second, there
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is the issue of imaginary to real time conversion, though for disordered systems
in WDM, this should not be the biggest problem.

• For ground state problems, methods to remove core electrons using non-local
pseudopotentials have been developed. However with path integrals, only all
electron calculations have been done, see §2.3. Core electrons have problems for
non-local pseudopotentials with restricted paths that have not been resolved. It is
not known yet whether this is a serious problem or if pseudopotentials developed
at T = 0 would work in the WDM regime.

• The final, but most fundamental problem is the fermion sign problem. This is a
well-studied problem with as yet no known general solution (in fact it has been
shown that there exist quantum glass states that are NP-complete [?]). Above the
Fermi temperature the nodes should be dominated by the free particle nodes, and
perturbation theory should take us to lower temperatures. Also, as mentioned, a
variational principle should be able to guide us to lower temperatures as it does
at zero temperature. Little work has been done along these lines in practice.

The problems listed above are opportunities to find solutions at the intersection of
applied mathematics and many-body theory. None of these issues, beyond the sign
problem in a specific spin system, have been shown to be fundamental and hence
insurmountable. Because of this, we foresee QMC continuing to be a central tool as
WDM research moves forward.
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